Solutions to tutorial exercises for stochastic processes

T1. Let $Z \sim N(\mu, \sigma^2)$. Let $N \in \mathbb{N}$ and let $(Z_n)_{1 \leq n \leq N}$ be i.i.d. random variables with $Z_1 \sim N(\frac{\mu}{N}, \frac{\sigma^2}{N})$. Then

$$\sum_{n=1}^{N} Z_n \sim N(\mu, \sigma^2),$$

so that Z is infinitely divisible.

Let $\lambda > 0$ and $X \sim \text{POI}(\lambda)$. Let $N \in \mathbb{N}$ and let $(X_n)_{1 \le n \le N}$ be i.i.d. random variables with $X_1 \sim \text{POI}(\frac{\lambda}{N})$. Then

$$\sum_{n=1}^{N} X_n \sim \mathrm{POI}(\lambda),$$

so that X is infinitely divisible.

T2. Let X be a random variable with finite support and $N \in \mathbb{N}$. Suppose Var(X) = 0, so that X is constant. Then

$$\sum_{i=1}^{N} \frac{X}{N} \stackrel{d}{=} X,$$

so that X is infinity divisible. Now suppose $\operatorname{Var}(X) > 0$. Without loss of generality we can assume $\mathbb{E}[X] = 0$ and $\operatorname{Var}(X) = 1$. Suppose there exists i.i.d. random variables $(X_i^N)_{1 \le i \le N}$ with $\sum_i X_i^N \stackrel{d}{=} X$. Then $\mathbb{E}[X_i^N] = 0$ and $\operatorname{Var}(X_i^N) = \frac{1}{N}$ for all *i*. We know that X has finite support, so that there exists $m \in \mathbb{R}$ such that

$$m = \inf \left\{ A \in \mathbb{R} : \mathbb{P} \left(X \in [-A, A] \right) = 1 \right\},\$$

so that $\mathbb{P}(X > m) = 0$. It follows that

$$0 = \mathbb{P}(X > m) = \mathbb{P}\left(\sum_{i=1}^{N} X_i^N > m\right) \ge \mathbb{P}\left(X_1^N > \frac{m}{N}\right)^N,$$

so that $\mathbb{P}(X_1^N > \frac{m}{N}) = 0$. Similarly we can prove that $\mathbb{P}(X_1^N < -\frac{m}{N}) = 0$. Let $\varepsilon > 0$. It now follows that the triangular array $(X_i^N)_{N \in \mathbb{N}, 1 \le i \le N}$ satisfies the Lindeberg condition:

$$\sum_{i=1}^{N} \mathbb{E}\left[\left(X_{i}^{N} \right)^{2} \mathbb{1}_{\left\{ |X_{i}^{N}| > \varepsilon \right\}} \right] = N \mathbb{E}\left[\left(X_{1}^{N} \right)^{2} \mathbb{1}_{\left\{ |X_{1}^{N}| > \varepsilon \right\}} \right] \le n \frac{m^{2}}{n^{2}} = \frac{m^{2}}{N} \to 0 \quad \text{as} \quad N \to \infty.$$

The Lindeberg-Feller theorem now states that $\sum_i X_i^N$ converges weakly to a random variable with standard normal distribution as $N \to \infty$. However, $X \stackrel{d}{=} \sum_i X_i^N$ has finite support, which is a contradiction. It follows that the only infinitely divisible random variables with finite support are constants.

T3. We first show that X has stationary increments. Let $0 \le s \le t$. We have

$$X_t - X_s = \sum_{n=N_s}^{N_t} Y_n \stackrel{d}{=} \sum_{n=1}^{N_t - N_s} Y_n.$$

Since N is a Poisson process it has stationary increments. So the distribution of $N_t - N_s$ only depends on t - s. So the distribution of $X_t - X_s$ only depends on t - s.

Let $0 \leq s < t$. We prove that $X_t - X_s$ and X_s are independent. Denote by $\phi_Y(\cdot)$ the characteristic function of Y_1 . Let $a, b \in \mathbb{R}$. We have

$$\mathbb{E}\left[\exp(iaX_s + ib(X_t - X_s))\right] = \mathbb{E}\left[\exp\left(ia\sum_{j=1}^{N_s} Y_j\right)\exp\left(ib\sum_{j=N_s+1}^{N_t} Y_j\right)\right]$$
$$= \sum_{k=0}^{\infty}\sum_{l=0}^{\infty}\mathbb{E}\left[\exp\left(ia\sum_{j=1}^{k} Y_j\right)\exp\left(ib\sum_{j=k+1}^{k+l} Y_j\right)\mathbb{1}_{\{N_s=k, N_t=k+l\}}\right]$$
$$= \sum_{k=0}^{\infty}\sum_{l=0}^{\infty}\phi_Y(a)^k\phi_Y(b)^l e^{-\lambda s}\frac{(\lambda s)^k}{k!}e^{-\lambda(t-s)}\frac{(\lambda(t-s))^l}{l!},$$

since Y_j are independent of each other and of N, and since N has stationary and independent increments. It follows that

$$\mathbb{E}\Big[\exp(iaX_s+ib(X_t-X_s))\Big] = \sum_{k=0}^{\infty} \phi_Y(a)^k e^{-\lambda s} \frac{(\lambda s)^k}{k!} \sum_{l=0}^{\infty} \phi_Y(b)^l e^{-\lambda(t-s)} \frac{(\lambda(t-s))^l}{l!}$$
$$= \phi_{X_s}(a)\phi_{X_t-X_s}(b),$$

so that X_s and $X_t - X_s$ are independent. It can be proven similarly that n increments are independent.