Solutions to tutorial exercises for stochastic processes

T1. Let $Z \sim N\left(\mu, \sigma^{2}\right)$. Let $N \in \mathbb{N}$ and let $\left(Z_{n}\right)_{1 \leq n \leq N}$ be i.i.d. random variables with $Z_{1} \sim$ $N\left(\frac{\mu}{N}, \frac{\sigma^{2}}{N}\right)$. Then

$$
\sum_{n=1}^{N} Z_{n} \sim N\left(\mu, \sigma^{2}\right)
$$

so that Z is infinitely divisible.
Let $\lambda>0$ and $X \sim \operatorname{POI}(\lambda)$. Let $N \in \mathbb{N}$ and let $\left(X_{n}\right)_{1 \leq n \leq N}$ be i.i.d. random variables with $X_{1} \sim \operatorname{POI}\left(\frac{\lambda}{N}\right)$. Then

$$
\sum_{n=1}^{N} X_{n} \sim \operatorname{POI}(\lambda)
$$

so that X is infinitely divisible.

T2. Let X be a random variable with finite support and $N \in \mathbb{N}$. Suppose $\operatorname{Var}(X)=0$, so that X is constant. Then

$$
\sum_{i=1}^{N} \frac{X}{N} \stackrel{d}{=} X
$$

so that X is infinity divisible. Now suppose $\operatorname{Var}(X)>0$. Without loss of generality we can assume $\mathbb{E}[X]=0$ and $\operatorname{Var}(X)=1$. Suppose there exists i.i.d. random variables $\left(X_{i}^{N}\right)_{1 \leq i \leq N}$ with $\sum_{i} X_{i}^{N} \stackrel{d}{=} X$. Then $\mathbb{E}\left[X_{i}^{N}\right]=0$ and $\operatorname{Var}\left(X_{i}^{N}\right)=\frac{1}{N}$ for all i. We know that X has finite support, so that there exists $m \in \mathbb{R}$ such that

$$
m=\inf \{A \in \mathbb{R}: \mathbb{P}(X \in[-A, A])=1\}
$$

so that $\mathbb{P}(X>m)=0$. It follows that

$$
0=\mathbb{P}(X>m)=\mathbb{P}\left(\sum_{i=1}^{N} X_{i}^{N}>m\right) \geq \mathbb{P}\left(X_{1}^{N}>\frac{m}{N}\right)^{N}
$$

so that $\mathbb{P}\left(X_{1}^{N}>\frac{m}{N}\right)=0$. Similarly we can prove that $\mathbb{P}\left(X_{1}^{N}<-\frac{m}{N}\right)=0$. Let $\varepsilon>0$. It now follows that the triangular array $\left(X_{i}^{N}\right)_{N \in \mathbb{N}, 1 \leq i \leq N}$ satisfies the Lindeberg condition:

$$
\sum_{i=1}^{N} \mathbb{E}\left[\left(X_{i}^{N}\right)^{2} \mathbb{1}_{\left\{\left|X_{i}^{N}\right|>\varepsilon\right\}}\right]=N \mathbb{E}\left[\left(X_{1}^{N}\right)^{2} \mathbb{1}_{\left\{\left|X_{1}^{N}\right|>\varepsilon\right\}}\right] \leq n \frac{m^{2}}{n^{2}}=\frac{m^{2}}{N} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

The Lindeberg-Feller theorem now states that $\sum_{i} X_{i}^{N}$ converges weakly to a random variable with standard normal distribution as $N \rightarrow \infty$. However, $X \stackrel{d}{=} \sum_{i} X_{i}^{N}$ has finite support, which is a contradiction. It follows that the only infinitely divisible random variables with finite support are constants.

T3. We first show that X has stationary increments. Let $0 \leq s \leq t$. We have

$$
X_{t}-X_{s}=\sum_{n=N_{s}}^{N_{t}} Y_{n} \stackrel{d}{=} \sum_{n=1}^{N_{t}-N_{s}} Y_{n} .
$$

Since N is a Poisson process it has stationary increments. So the distribution of $N_{t}-N_{s}$ only depends on $t-s$. So the distribution of $X_{t}-X_{s}$ only depends on $t-s$.
Let $0 \leq s<t$. We prove that $X_{t}-X_{s}$ and X_{s} are independent. Denote by $\phi_{Y}(\cdot)$ the characteristic function of Y_{1}. Let $a, b \in \mathbb{R}$. We have

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(i a X_{s}+i b\left(X_{t}-X_{s}\right)\right)\right] & =\mathbb{E}\left[\exp \left(i a \sum_{j=1}^{N_{s}} Y_{j}\right) \exp \left(i b \sum_{j=N_{s}+1}^{N_{t}} Y_{j}\right)\right] \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \mathbb{E}\left[\exp \left(i a \sum_{j=1}^{k} Y_{j}\right) \exp \left(i b \sum_{j=k+1}^{k+l} Y_{j}\right) \mathbb{1}_{\left\{N_{s}=k, N_{t}=k+l\right\}}\right] \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \phi_{Y}(a)^{k} \phi_{Y}(b)^{l} e^{-\lambda s} \frac{(\lambda s)^{k}}{k!} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{l}}{l!}
\end{aligned}
$$

since Y_{j} are independent of each other and of N, and since N has stationary and independent increments. It follows that

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(i a X_{s}+i b\left(X_{t}-X_{s}\right)\right)\right] & =\sum_{k=0}^{\infty} \phi_{Y}(a)^{k} e^{-\lambda s} \frac{(\lambda s)^{k}}{k!} \sum_{l=0}^{\infty} \phi_{Y}(b)^{l} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{l}}{l!} \\
& =\phi_{X_{s}}(a) \phi_{X_{t}-X_{s}}(b),
\end{aligned}
$$

so that X_{s} and $X_{t}-X_{s}$ are independent. It can be proven similarly that n increments are independent.

